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Abstract. The geometric approach to force balance advocated by T. Hughes in a series of publications has 7 

challenged the analytic approach by implying that the latter does not adequately account for basal buoyancy 8 

on ice streams, thereby neglecting the contribution to the gravitational driving force associated with this 9 

basal buoyancy.  Application of the geometric approach to Byrd Glacier, Antarctica, yields physically 10 

unrealistic results and it is argued that this is because of a key limiting assumption in the geometric 11 

approach.  A more traditional analytical treatment of force balance shows that basal buoyancy does not 12 

affect the balance of forces on ice streams, except locally perhaps, through bridging effects. 13 
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1. Introduction 15 

Ice streams are fast-moving rivers of ice embedded in the more sluggish-moving main body of ice sheets, 16 

and are responsible for the bulk of drainage from the interior in West Antarctica.  Most ice streams start 17 

well upstream from the coast, some extending several hundreds of km into the interior, and drain into 18 

floating ice shelves or ice tongues and are believed to represent the transition from inland-style “sheet 19 

flow” to ice-shelf spreading.  The nature of this transition remains under debate, however. 20 

In a long series of papers, T. Hughes presents the geometric approach to the balance of forces acting on ice 21 

shelves, ice streams, and interior ice [Hughes, 1986, 1992, 1998, 2003, 2009a, 2009b, 2012; Hughes et al., 22 

2011, 2016].  Rather than working his way through the basic equations, as done by most other 23 

investigators, including Van der Veen and Whillans [1989] and Van der Veen [2013], he presents 24 

derivations based on graphical interpretation of triangles representing forces acting on an ice column.  In 25 

essence, the transition in flow regime is achieved by introducing a basal buoyancy factor that describes the 26 

gradual ice-bed decoupling towards the grounding line. 27 

The idea of basal buoyancy has been invoked many times before in glaciology, in particular in the context 28 

of formulating a sliding relation.  In many models, the sliding speed is assumed to be inversely proportional 29 

to the “effective basal pressure” defined as the difference between the weight of the overlying ice and the 30 

pressure in the subglacial drainage system.  Intuitively, this approach may seem to make sense: as the 31 

subglacial water pressure increases, the normal force on the bed should be reduced, thus allowing the 32 

glacier to move faster.  An analogy may be drawn with pushing a shopping cart across a sandy beach: the 33 

less groceries are in the cart, the easier it is to push the cart forward.  The difference is, of course, that the 34 

weight of the groceries is pre-determined (by the ice thickness), so the only way to facilitate the forward 35 

motion is through some force acting to lift the cart upward.  Hughes [2008, 2012] suggests that basal 36 

decoupling provides this upward force. 37 

The objective of this brief note is to evaluate the implications of Hughes’ geometric approach to force 38 

balance by applying the results to Byrd Glacier, East Antarctica. 39 

2. Force balance: analytical approach 40 

Analytical treatments of glacier force balance are numerous and derivations of the depth-integrated force-41 

balance equations are now standard fare in most glaciology textbooks.  In most cases, this balance of forces 42 

is discussed in terms of stress deviators, defined as the full stress minus the hydrostatic pressure.  This is 43 

done because the flow law for glacier ice relates strain rates to stress deviators.  That is 44 

ij ij ij xx yy xx
1

'
3

 σ = σ − δ σ + σ + σ   (1) 45 
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where the prime denotes the stress deviator and unprimed stresses are full stresses, and ijδ  = 1 for i = j and 46 

ijδ  = 0 for i ≠ j.  Deviatoric stresses are called for in the flow law for glacier ice because the rate of 47 

deformation is in good approximation independent of the hydrostatic pressure.  However, the use of 48 

deviatoric stresses in discussing the balance of forces unnecessarily complicates the interpretation because 49 

the longitudinal deviatoric stress in one direction depends on the full normal stresses in all three directions 50 

of a Cartesian coordinate system.  It is more convenient to consider stresses in a glacier as the sum of the 51 

stress due to the weight of the ice (lithostatic stress) and stresses, ijR , due to the flow (resistive stresses).  52 

This partitioning makes a clearer distinction between action and reaction in glacier dynamics [Whillans, 53 

1987] and follows common practice in geophysics [Engelder, 1993, p. 10; Turcotte and Schubert, 2002, p. 54 

77]. 55 

It may be noted that the term “resistive” stress is an unfortunate choice, perhaps, because these stresses do 56 

not necessarily always offer resistance to flow.  For example, gradients in longitudinal stress can act in 57 

cooperation with the driving stress in pulling the ice forward.  A more appropriate terminology would 58 

perhaps be flow stress or, following geophysical terminology, tectonic stress.  The ijR  represent the 59 

stresses that are associated with glacier deformation, as opposed to the lithostatic stress which describes the 60 

action of gravity.  However, the existing terminology appears to have made its way into the glaciological 61 

literature [e.g. Cuffey and Paterson, 2010 section 8.2.2] and a name change at this stage likely would 62 

introduce even more confusion. 63 

Van der Veen [2013, sect. 3.1] presents a derivation of the column-average balance equations by integrating 64 

the momentum balance equations over the full ice thickness.  Van der Veen and Payne [2004] and Van der 65 

Veen [2013, sect. 3.2] present a discussion of force balance based on geometric arguments and, not 66 

surprisingly, arrive at the same result.  Without loss of generality, flow in one horizontal direction may be 67 

considered.  That is, the horizontal x-axis is chosen in the direction of flow and it is assumed that there is 68 

no component of flow in the other horizontal y-direction.  The z-axis is vertical upward, with z = 0 at sea 69 

level.  Force balance in the flow direction is then described by the following equation [Van der Veen and 70 

Whillans, 1989; Van der Veen, 2013, sect. 3.1]: 71 

( ) ( )dx bx xx xyH R H R
x y

∂ ∂τ = τ − −
∂ ∂

ɶ ɶ  (2) 72 

In this expression, dxτ  denotes the gravitational driving stress, defined as 73 

dx
h

g H
x

∂τ = − ρ
∂

 (3) 74 

where ρ represents the density of ice, g the gravitational acceleration, H the ice thickness, and h the 75 

elevation of the upper ice surface.  The terms on the right-hand side of equation (2) represent the resistance 76 

to flow associated with, respectively, drag at the glacier base, gradients in longitudinal stress (“pulling 77 

power”) and lateral drag arising from shear between the faster-moving ice stream and the near-stagnant 78 

The Cryosphere Discuss., doi:10.5194/tc-2016-44, 2016
Manuscript under review for journal The Cryosphere
Published: 24 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

4 

 

interstream ridges or fjord walls.  The tilde (~) denotes depth-averaged values.  Resistive stresses are 79 

defined following Van der Veen and Whillans [1989] as: 80 

( )xx xxR g h z= σ + ρ −  (4) 81 

xy xyR = σ  (5) 82 

where ijσ  represents the full stress, and -ρg(h – z) the lithostatic stress (weight of the ice above) at depth z. 83 

The balance equation (2) is exact.  No approximations are involved in deriving this expression from the 84 

basic equations describing the balance of forces on a segment of ice [Van der Veen and Whillans, 1989; 85 

Van der Veen, 2013, sect. 3.1].  Consequently, this equation applies to free-floating ice shelves where the 86 

gravitational driving stress is balanced entirely by gradients in longitudinal stress, yielding the classic 87 

Weertman [1957] solution [Van der Veen, 2013, sect. 4.5], as well as laminar flow with basal drag 88 

providing sole resistance to flow [Van der Veen, 2013, sect. 4.2].  Except for these two end-member 89 

solutions, equation (2) does not permit analytical solutions without making additional assumptions.  90 

Nevertheless, because no approximations were made in its derivation, balance equation (2) applies equally 91 

well to transitory flow regimes such as ice streams and outlet glaciers. 92 

Integrating the balance equation over the width of the flowband simplifies the resistive term associated with 93 

drag at the lateral margins.  Denoting the lateral shear stress at the margins by sτ  (assumed to have the 94 

same magnitude but opposite signs at both lateral margins), and glacier width by W, lateral resistance on a 95 

section of glacier of unit width is [Van der Veen, 2013, eq. (4.39)] 96 

s
s

2H
F

W

τ=  (6) 97 

and the width-averaged force-balance equation becomes 98 

( ) s
dx bx xx

2H
HR

x W

τ∂τ = τ − +
∂

ɶ  (7) 99 

with the understanding that all terms are averaged over the flowband width (or, equivalently, considered 100 

constant across the flowband).  Note that contrary to what Hughes [2008, p. 53] states, lateral drag does not 101 

vanish at the center of a glacier.  While the shear stress, xyR , is zero at the centerline, its transverse 102 

derivative and thereby resistance from lateral drag, is not zero there.  In fact, according to equation (6), this 103 

resistance is constant across the glacier width. 104 

The geometric approach developed by Hughes arrives at a similar balance equation, namely 105 

sF
b

2HHh
gH

x x W

τ∆ σ∆−ρ = τ − +
∆ ∆

 (8) 106 

[Hughes, 2003, eq. (36)] or, taking the limit x 0∆ →  107 
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sF
b

2HHh
gH

x x W

τ∂ σ∂−ρ = τ − +
∂ ∂

 (9) 108 

In these balance equations, Fσ  is related to the deviatoric tensile stress; its exact interpretation has evolved 109 

over the years.  To avoid unnecessary confusion, a consistent notation is used in the following discussion, 110 

based on Hughes [2008, 2012].  Comparison of equations (7) and (9) shows that F xxRσ = ɶ .  It is the way 111 

this stress is calculated that sets Hughes’ geometric approach apart from the analytical approach.  In 112 

essence, this stress is linked to basal buoyancy and, in later versions, downglacier-integrated resistance 113 

from basal and lateral drag.  While the force balance equation (7) does not imply any assumption about the 114 

depth-variation in the longitudinal resistive stress, xxR , Hughes [2003] explicitly argues that both Fσ  and 115 

the associated stretching rate, xxεɺ , must be constant in the vertical direction. 116 

3. Force balance: geometric approach 117 

Discussing force balance for stream flow, Hughes [2008, section 11] equates Fσ  with a basal buoyancy 118 

factor, φ, as 119 

2
F

gH

2

ρσ = φ  (10) 120 

where 121 

w w w

i

H P

H P

ρ
φ = =

ρ
 (11) 122 

is determined by the ratio of the areal average water pressure under the ice, and basal ice pressure (or 123 

weight of the ice column); wρ  represents the density of sea water.  For a floating ice shelf, φ = 1, and 124 

expression (10) reduces to the solution for a free-floating ice shelf spreading in the x-direction only 125 

[Weertman, 1957; Van der Veen, 2013, sect. 4.5].  For inland-style flow, φ = 0, and the lamellar flow 126 

solution can be derived.  For ice streams and outlet glaciers that represent the transition from interior-style 127 

flow to ice-shelf spreading, 1 < φ < 0.  In first-order approximation 128 

oH

H(x)
φ =  (12) 129 

where Ho represents the thickness at the grounding line, and H(x) the ice thickness at some distance x 130 

upstream of the grounding line [Hughes, 2008, eq. (11.11)].  This relation is robust and a decrease in φ 131 

going upglacier from the grounding line increases ice-bed coupling and generally yields a concave surface 132 

profile [Hughes, 2008, p. 58]. 133 

Hughes [2008] takes the geometric approach to another level and relates all resistance to flow on ice 134 

streams to the basal buoyancy factor, φ.  In addition to relating the longitudinal stress deviator to this factor, 135 
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lateral and basal drags are linked to φ as [Hughes, 2008, table 12.1; see also Hughes, 2009a,b; Hughes, 136 

2012, table 12.1; Hughes et al., 2016, eqs. (12) – (17)] 137 

2 2
b

h
g H(1 ) g H (1 )

x x

∂ ∂φτ = − ρ − φ − ρ − φ
∂ ∂

 (13) 138 

s
h 1

F 2 g H (1 ) gH W (1 2 )
x 2 x

∂ ∂φ= − ρ φ − φ − ρ − φ
∂ ∂

 (14) 139 

while the longitudinal stress gradient term is given by 140 

FH h
gH H

x x x

 ∂ σ ∂ ∂ φ= ρ φ φ + ∂ ∂ ∂ 
 (15) 141 

The achievement here is that these equations are derived without consideration of ice velocity or physical 142 

properties of the ice (temperature, stiffness, fabric development, etc.), or, for that matter, basal water 143 

availability and balance.  Presumably, all these factors are somehow reflected in the ice-stream geometry 144 

and the inferred basal buoyancy. 145 

4. Geometric approach: application to Byrd Glacier, Antarctica 146 

Balance of forces on Byrd Glacier, East Antarctica, was first discussed by Whillans et al. [1989] who used 147 

measurements of surface velocity and surface topography derived from repeat aerial photogrammetry, to 148 

evaluate the relative roles of lateral drag, gradients in longitudinal stress, and basal drag in resisting the 149 

gravitational driving stress.  Van der Veen et al. [2014] reconsidered these calculations and also 150 

investigated the effect of drainage of two sub-glacial lakes in the catchment region.  Both studies employed 151 

the analytical force-balance approach. 152 

Reusch and Hughes [2003], Hughes [2009a], Hughes et al. [2011], and Hughes et al. [2016] discuss force 153 

balance on Byrd Glacier from the geometrical perspective and take issue with the analytical approach of 154 

Whillans et al. [1989].  None of these studies explicitly shows how the various resistive forces vary along 155 

the glacier and, instead, largely base their discussion on how the basal buoyancy, φ, varies upstream of the 156 

grounding line.  Therefore, to fully appreciate the implications of the geometrical approach, equations (13) 157 

– (15) are applied here to evaluate all terms in the balance of forces. 158 

The geometry is shown in Figure 1 [Van der Veen et al., 2014, fig. 6].  Only the lower 30 km stretch 159 

upstream of the grounding line (at x = -10 km) is considered here because that is the region laterally 160 

bounded by near-parallel ford walls.  Also shown in Figure 1 is the basal buoyancy factor calculated from 161 

eq. (12); φ increases from around 0.7 a little more than 30 km upstream of the grounding line, to 1 where 162 

the ice starts to float.  While there is nothing in particular wrong or disturbing about this basal buoyancy 163 

factor, the situation becomes more problematic when the actual forces are considered. 164 

The average driving stress is ~160 kPa, but shows large spatial variations that appear to be temporally fixed 165 

(Figure 2).  Gradients in longitudinal stress are mostly negative, averaging -140 kPa along the flowline, 166 
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implying that, except in a few isolated locations, this term acts in the same directions as the driving stress, 167 

draining the grounded ice into the Ross Ice Shelf.  To maintain balance of forces, flow resistance is 168 

partitioned between basal drag (~53 kPa) and lateral drag (~247 kPa).  In the geometric approach, the bulk 169 

of flow resistance is associated with lateral drag and basal drag supports only about 1/3 of the driving 170 

stress.  This result is surprising and there is no credible physical mechanism that can explain this.  Even on 171 

a free-floating ice shelf, where other sources of flow resistance may be neglected, gradients in longitudinal 172 

stress arising from water pressure act to oppose the driving stress [Weertman, 1957; Van der Veen, 2013, 173 

sect. 4.5].  Hughes et al. [2016, p. 201] argue that the water buttressing produces a backstress in the 174 

longitudinal force balance, and that this is a real stress that is obscured using continuum mechanics in the 175 

conventional analytical approach.  According to Hughes [2008, 2012], this stress, or “pulling power” 176 

results in the overestimation of longitudinal stress gradients, adding to the driving stress. 177 

5. Limitation of the geometric approach 178 

To understand the limitation in the geometrical approach to force balance, consider the forces along an ice 179 

stream flow line as discussed in Hughes [2008, p. 53 ff.] (see also figure 1 in Hughes [2003], and Hughes 180 

[2012, section 11]).  The geometry is shown in Figure 3.  While Hughes [2008, p. 53; 2012, p. 66] 181 

erroneously states that resistance from lateral drag vanishes at the centerline of an ice stream and therefore 182 

does not include this source of resistance in his discussion, this has no significant impact on the following 183 

discussion – lateral drag can be readily added to the basal drag term without altering the general tenets of 184 

the analysis. 185 

According to Hughes [2008, 2012], the gravitational driving force at x is 186 

2
g

1
F area ADF gH

2
= = ρ  (16) 187 

and this force must be balanced by longitudinal resisting forces consisting of a “water buttressing force” 188 

(area CDE), a tensile force (area BCE), and a basal drag force (area ABEF).  The basal drag force equals 189 

integrated basal resistance from the grounding line to the upglacier location (integrated resistance from 190 

lateral drag could also be included in this term).  The area of each triangle is obtained from the familiar 191 

formula (base × height) / 2, where the base either equals the ice overburden pressure (DF = ρgH) or water 192 

pressure (DE = wρ gH), and the height equals the ice thickness (AD = H), flotation height (BD = 193 

f w wH ( / )H= ρ ρ ), or the piezometric height (CD = w w wH P / ( g)= ρ ).  Thus, each of the resistive 194 

terms can be evaluated as a function of local ice thickness and water pressure.  The reason why, for 195 

example, area ABEF should be associated with basal drag force (or basal plus lateral drag), remains unclear 196 

but is irrelevant. 197 

The problem with this reasoning is that gF  does not represent the gravitational driving force.  Rather, this 198 

force equals the lithostatic force associated with the weight of ice.  When considering horizontal forces at 199 

any location, this force is balanced exactly by an equal but opposite force from ice of equal thickness on the 200 
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left of the vertical line AD, except at the calving front.  In other words, adhering to the geometric 201 

representation, triangle ADF is balanced by the mirror triangle ADP (Figure 4a), whether one considers an 202 

ice shelf, ice stream, or interior ice.  The gravitational force that drives glacier flow is associated with 203 

gradients in lithostatic stress (Figure 4b).  A correct geometry-based discussion of force balance would 204 

consider the difference between lithostatic stress at x and at some location x + ∆x downglacier, and, in the 205 

case of a sloping bed, lithostatic stress acting on the bed, and the difference between longitudinal stress at 206 

both locations, in addition to basal and lateral drag acting over the distance considered.  Doing so gives the 207 

balance equation (7) [Van der Veen and Payne, 2004; Van der Veen, 2013, section 3.2]. 208 

It is not possible to relate resistive forces at any location to point values such as basal water pressure or 209 

weight of the ice at location x.  While resistive stresses, such as xxR , can be evaluated at specific points, 210 

resistance to flow is associated with gradients in these stresses [see, e.g., Van der Veen, 2013, figure 3.1 211 

and eqs. (3.8) – (3.9)].  Balance of forces is only meaningful if applied to flowline segments, not single 212 

locations.  Consequently, the concept of force balance at any location is inherently flawed.  While many, if 213 

not most, glaciologists, Van der Veen [2013] included, often refer to driving stress or basal drag at location 214 

x, it would be more appropriate to refer to these quantities as areal averages.  If the surface slope is 215 

calculated over a distance 2∆x, the associated driving stress is the average over the interval (x – ∆x, x + 216 

∆x), and similarly for basal drag.  Nuancing common parlance to reflect this subtlety would render many 217 

discussions of glacier dynamics unnecessarily cumbersome and should be superfluous for most readers 218 

understanding the fundamentals of glacier dynamics. 219 

6. Discussion 220 

While the geometric force balance approach is severely limited, it is worth exploring the central premise of 221 

Hughes’ ideas, namely that the transition from sheet flow to shelf flow is achieved through basal buoyancy, 222 

with interior ice firmly grounded on bedrock and ice shelves floating in sea water.  It should be noted that 223 

for both these end member solutions, at any location the weight of an ice column is fully supported from 224 

directly below: terra firma in the case of grounded ice, and sea water for ice shelves. 225 

While not immediately obvious, the role of varying subglacial water pressure is included in the force-226 

balance equation (7), namely though bridging effects [Van der Veen, 2013, sect. 3.4].  To clarify this, 227 

consider that resistive stresses are linked to strain rates, or velocity gradients, by invoking Glen’s flow law 228 

for glacier ice [Van der Veen and Whillans, 1989; Van der Veen, 2013, sect. 3.3]: 229 

( )1/ n 1
xx e xx yy zzR B 2 R−= ε ε + ε +ɺ ɺ ɺ  (17) 230 

1/ n 1
xy e xyR B −= ε εɺ ɺ  (18) 231 
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Here, B represents the temperature-dependent rate factor, and n = 3 the flow-law exponent; eεɺ  is the 232 

effective strain rate defined as the second invariant of the strain-rate tensor.  The last term on the right-hand 233 

side of equation (17) is the vertical resistive stress defined as 234 

zz zzR (z) g(h z)= σ + ρ −  (19) 235 

For brevity of notation, the along-flow resistive stress is written as the sum of a contribution associated 236 

with along-flow gradients in velocity (first term on the right-hand side of equation (17)) and the vertical 237 

resistive stress: 238 

(0)
xx xx zzR R R= +  (20) 239 

Force-balance in the horizontal direction can then also be written as 240 

( ) ( )
h

(0)
dx bx xx xy zz

h H
H R HR R (z)dz

x y x −

∂ ∂ ∂τ = τ − − − ∫∂ ∂ ∂
ɶ ɶ  (21) 241 

Where the weight of the ice is fully supported by the substrate below, the vertical resistive stress is zero.  242 

This is the assumption usually made when considering the budget of forces acting on glaciers [e.g. Van der 243 

Veen and Whillans, 1989].  Locally, however, bridging effects may be important, for example where a 244 

water-filled cavity exists at the ice-bed interface [Van der Veen, 2013, sect. 7.2].  Where cavitation occurs 245 

and basal ice becomes separated from the bed, the cavity cannot support the weight of the ice leading to 246 

shear-stress gradients that effectively transfer the weight to surrounding areas where the ice is in contact 247 

with the bed, such that the areal average of the vertical resistive stress is zero.  Thus, on a large scale, such 248 

as the length of ice streams and outlet glaciers, basal buoyancy is a non-issue where horizontal force 249 

balance is concerned.  Indeed, Hughes [1998, eq. (3.5)] does not include bridging effects in his discussions 250 

and equates the total vertical stress at depth to the lithostatic stress. 251 

Basal buoyancy may be important on ice streams and outlet glaciers according to the commonly-adopted 252 

sliding relation in which sliding speed is inversely proportional to the effective basal pressure.  Pfeffer 253 

[2007] suggests that this proportionality may explain rapid velocity increases on tidewater glaciers and 254 

Greenland outlet glaciers: as these glaciers thinned and thickness approached flotation, the effective basal 255 

pressure approached zero, resulting in a large increase in sliding velocity.  Another possibility is that 256 

increased basal buoyancy reduces basal drag, thereby allowing glaciers to move faster.  The importance of 257 

these effects can be evaluated from analysis of time series of surface speed and glacier geometry, or using 258 

numerical models based on the balance equation (7). 259 

The primary difference between shelf flow and stream flow is not that on ice shelves the ice weight is 260 

supported by water and on grounded interior ice this weight is supported by the bed below.  The main 261 

difference is that, because ice shelves float in water, basal drag is zero and resistance to flow must be 262 

partitioned between gradients in longitudinal stress and lateral drag, whereas for sheet flow, basal drag 263 

provides most resistance to flow.  Thus, it would seem reasonable to propose that the transition from sheet 264 

to shelf flow involves a gradual reduction in basal resistance, perhaps associated with the presence within 265 
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deforming sediments, or gradual drowning of bed obstacles.  As basal drag becomes less important, 266 

longitudinal stress gradients and lateral drag must increase and provide most or all resistance to the flow of 267 

ice streams. 268 

7. Concluding remarks 269 

The geometrical approach to ice sheet modeling links ice-bed coupling directly to the stresses that resist 270 

horizontal gravitational motion [Hughes, 2008, p. 34].  This basal buoyancy supposedly translates into a 271 

major component of gravitational forcing by which ice sheets discharge ice into the sea [Hughes, 2003].  272 

The concept as presented by Hughes in a series of publications spanning the last 30 years has yet to come 273 

up with a solution that can be successfully applied to ice streams and outlet glaciers.  This is not to say that 274 

a geometric approach is inherently flawed – if implemented correctly it should produce consistent and 275 

correct results but this has yet to be achieved. 276 

The charge that the analytical force-budget approach fails to account for basal buoyancy and excludes a 277 

“water buttressing force” on ice streams is incorrect.  Equation (7) describing the depth-integrated balance 278 

of horizontal forces is derived without making any simplifying assumptions and applies equally well to 279 

floating ice shelves and firmly grounded interior ice.  If some phantom force is missing from this equation, 280 

this force must also be missing from the momentum balance equations that form the starting point for 281 

deriving equation (7). 282 

Hughes is correct that ice streams and outlet glaciers represent the transition from sheet flow and shelf flow 283 

and that much remains to be understood about the nature of this transition.  Advantageously, ongoing rapid 284 

changes on many of the outlet glaciers have been well documented through time series of surface elevation 285 

and surface velocity.  The latter, in particular, are powerful indicators of the distribution of stresses on 286 

glaciers because strain rates (velocity gradients) are directly linked to stresses through the flow law for 287 

glacier ice.  Improved understanding of the dynamics of rapidly-changing ice-sheet components will come 288 

from interpretation of strain rates and temporal changes therein. 289 
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Figure 1.  Geometry of the lower part of Byrd Glacier, East Antarctica.  The dashed line in the lower panel 339 

shows the buoyancy factor, calculated from eq. (12). 340 
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Figure 2.  Force-balance terms according to geometric force balance, eqs. (13) – (14). 341 
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Figure 3.  Geometric force balance according to Hughes [2008].  H represents ice thickness, Hf the 342 

flotation height or height of the ice column supported by basal water pressure, and Hw the piezometric 343 

height; Pw and Pi represent the basal water pressure and weight of the ice column, respectively.  Ice flow is 344 

from right to left. 345 
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Figure 4.  (a) at any location the lithostatic stress increases linearly with depth from zero at the ice surface 346 

to ρgH at the base; the lithostatic stress from ice on the right of the vertical line AD is balanced by an equal 347 

but opposite lithostatic stress from ice on the right and the area of triangle ADF equals that of triangle 348 

ADP.  (b) gradients in lithostatic stress are associated with a sloping ice surface, h(x), resulting in a smaller 349 

lithostatic stress in the downslope direction; the difference between the areas of both triangles is a measure 350 

of the gravitational driving stress responsible for glacier flow. 351 
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